Product Description

Product Description

Our gearless traction machine has been designed for various capacity and speed
which meet different customer’s requirements.
It is a mechatronics product which can be divided to internal rotor structure and
external rotor structure. It consists of stator, rotor, brake and encoder.
The traction machine is assembled with silicon-steel lamination which insulation
is F class. We use Neodymium iron boron (NdFeB), the best material for magnet.
The traction sheave is cast by nodular iron and which type is QT700-2.
The protection class of traction machine is IP41 for WTD1 and WTD1-B series,
IP40 for WTD2-P series; Noise class≤55dB; Acceleration vibration ≤ 0.45mm/s.
The traction machine mainly consists of stator frame, stator core, rotor, traction
sheave, brake pad, brake and encoder. The stator core is fixed to the stator frame.
The traction sheave is assembled into the rotor and there are 20 poles of magnets
are evenly distributed to the rotor.
To fix the rotation shaft and the rotor together and fix to the stator frame through
the bearing. The traction sheave is assembled to the front of the rotation shaft
which is the critical part to bear the whole weight of the lift. Encoder will be
assembled to the back of the shaft. Power supply wiring and temperature controller
are fixed inside the traction wiring connection box.
It achieves the brake function through the contact between friction plate and brake
wheel.

Detailed Photos

 

Product Parameters

 

Company Profile

Xihu (West Lake) Dis. Power Co.,Ltd.

 

Xihu (West Lake) Dis. Power Co.,Ltd. was founded in March,2571. It is a national Hi-Tech enterprise which specialized in providing energy-saving system.

 

Xihu (West Lake) Dis. Power Co., Ltd. consists of Xihu (West Lake) Dis. Power (ZheJiang ) Co., Ltd., Xihu (West Lake) Dis. Power (ZheJiang ) Co., Ltd., and Xihu (West Lake) Dis. Power (HangZhou) Co., Ltd. The headquarters is located at No. 26, Yingbin Avenue, National High-tech Zone, HangZhou, ZheJiang . The company can annually produce 250,000 electric vehicle powertrains, 300,000 electric vehicle motors, and 300,000 controllers.  

 

Xihu (West Lake) Dis. Power has a high-quality technical R&D team of more than 120 people, with high-tech talents selected from the National Ten Thousand Talents Program, National Science and Technology Innovation and Entrepreneurship Talents, ZheJiang Science and Technology Entrepreneurship Leaders, Xihu (West Lake) Dis.ang Top Talents, and Xihu (West Lake) Dis.ang Scarce Talents. And independently developed electric vehicle powertrains, permanent magnet synchronous motors, AC asynchronous motors, permanent magnet synchronous controllers, AC asynchronous controllers and other products, serving electric passenger cars, electric logistics vehicles, electric buses, electric minibuses, New energy vehicle industries such as electric forklifts, electric engineering vehicles, and electric logistics vehicles. Xihu (West Lake) Dis. Power has mastered the core technologies of electric vehicle motors, controllers, reducers and powertrains, established the ZheJiang Engineering Technology R&D Center, and listed the ZheJiang Provincial Key Laboratory, with more than 120 sets of experimental benches and experimental equipment. Design and development, performance verification, durability test, IP67 waterproof and dustproof test, mechanical vibration test, mechanical shock test, and full working conditions NVH experiment, high and low temperature cyclic impact experiment, high and low temperature loading operation experiment and other product design verification and testing capabilities.

 

Xihu (West Lake) Dis. Power has built an electric vehicle powertrain automated assembly workshop, an electric motor automated assembly workshop, a controller CHINAMFG automatic placement workshop, an automated winding and embedding workshop, a casting processing center, an online spraying center, a complete machine performance digital inspection center, and Created a zero-defect quality assurance system to provide customers with perfect products and high-quality services. Xihu (West Lake) Dis. Power has obtained the automotive industry IATF16949:2016 quality management system certification, ISO9001:2015 quality management system certification, ISO14001:2015 environmental management system certification, ISO45001:2018 occupational health and safety management system certification, EU product safety CE certification, and U.S. product safety Performance UL certification, Korean electrical product safety KC certification, etc.

 

At present, the company has formed a research and development platform suitable for 6 categories of electric drive products such as pure electric passenger vehicles, pure electric commercial vehicles, pure electric special vehicles, extended-range hybrids, electric vehicles, and intelligent unmanned vehicles, forming a 1.2kw- 500kw power series products, supporting the development of more than 260 varieties of electric power system products for domestic and foreign vehicle companies and power system integrators. In terms of application in the electric vehicle market, the company’s products are used in electric vehicles such as FIAT, Xpeng, BAIC, Geely, BYD, Changan, Xihu (West Lake) Dis.feng, Xihu (West Lake) Dis., Haima, Zotye, GM, King Long, Xihu (West Lake) Dis., Foton, Great Wall, Weimar and other electric vehicles. It has been successfully applied and has been among the best in market share for many years. The company’s products sell well all over the country, and are exported to Europe, America, India, the Middle East, Africa and Southeast Asia.

 

Xihu (West Lake) Dis. Power, Innovation Technology!

 

 

FAQ

Q1. What are your terms of packing?
A: We pack our goods in neutral wooden boxes and paper cartons. If you have a legally registered brand, we can pack the goods in your branded boxes after getting your authorization letters.

Q2. What are your terms of payment?
A: T/T 30% as deposit, and 70% before delivery. We’ll send you the photos of the products and packages before you pay the balance. For big orders, we accept L/C.

Q3. What are your terms of delivery?
A: EXW, FOB.

Q4. How about your delivery time?
A: It will take 15 to 45days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order.

Q5. Can you produce according to the samples?
A: Yes, we can produce your samples or technical drawings. We can produce the molds and fixtures in-house.

Q6. Do you test all your goods before delivery?
A: Yes, we have a 100% test before delivery, if necessary we can send an inspection report before delivery.

Q7. How long is your warranty period?
A: In general,2 years after deliveried
Q8. Do you have any certificates?
A: CE,SGS,ISO9001,IATF16949,UL,Etc

Q9. Do you have the import & export license?
We are official import & export licensed manufacturer.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 2years
Warranty: 2years
Type: Driving System
Suitable for: Elevator, Funicular Car
Load Capacity: 320kg-2500kg
Persons: 5-30 People

brake motor

What advancements in brake motor technology have improved energy efficiency?

Advancements in brake motor technology have led to significant improvements in energy efficiency, resulting in reduced power consumption and operational costs. These advancements encompass various aspects of brake motor design, construction, and control systems. Here’s a detailed explanation of the advancements in brake motor technology that have improved energy efficiency:

  • High-Efficiency Motor Designs: Brake motors now incorporate high-efficiency motor designs that minimize energy losses during operation. These designs often involve the use of advanced materials, improved winding techniques, and optimized magnetic circuits. High-efficiency motors reduce the amount of energy wasted as heat and maximize the conversion of electrical energy into mechanical power, leading to improved overall energy efficiency.
  • Efficient Brake Systems: Brake systems in modern brake motors are designed to minimize energy consumption during braking and holding periods. Energy-efficient brake systems utilize materials with low friction coefficients, reducing the energy dissipated as heat during braking. Additionally, advanced control mechanisms and algorithms optimize the engagement and disengagement of the brake, minimizing power consumption while maintaining reliable braking performance.
  • Regenerative Braking: Some advanced brake motors incorporate regenerative braking technology, which allows the recovery and reuse of energy that would otherwise be dissipated as heat during braking. Regenerative braking systems convert the kinetic energy of the moving equipment into electrical energy, which is fed back into the power supply or stored in energy storage devices. By harnessing and reusing this energy, brake motors improve energy efficiency and reduce the overall power consumption of the system.
  • Variable Speed Control: Brake motors equipped with variable frequency drives (VFDs) or other speed control mechanisms offer improved energy efficiency. By adjusting the motor’s speed and torque to match the specific requirements of the application, variable speed control reduces energy wastage associated with operating at fixed speeds. The ability to match the motor’s output to the load demand allows for precise control and significant energy savings.
  • Advanced Control Systems: Brake motors benefit from advanced control systems that optimize energy usage. These control systems employ sophisticated algorithms and feedback mechanisms to continuously monitor and adjust motor performance based on the load conditions. By dynamically adapting the motor operation to the changing requirements, these control systems minimize energy losses and improve overall energy efficiency.
  • Improved Thermal Management: Efficient thermal management techniques have been developed to enhance brake motor performance and energy efficiency. These techniques involve the use of improved cooling systems, such as advanced fan designs or liquid cooling methods, to maintain optimal operating temperatures. By effectively dissipating heat generated during motor operation, thermal management systems reduce energy losses associated with excessive heat and improve overall energy efficiency.

These advancements in brake motor technology, including high-efficiency motor designs, efficient brake systems, regenerative braking, variable speed control, advanced control systems, and improved thermal management, have collectively contributed to improved energy efficiency. By reducing energy losses, optimizing braking mechanisms, and implementing intelligent control strategies, modern brake motors offer significant energy savings and contribute to a more sustainable and cost-effective operation of equipment.

brake motor

What factors should be considered when selecting the right brake motor for a task?

When selecting the right brake motor for a task, several factors should be carefully considered to ensure optimal performance and compatibility with the specific application requirements. These factors help determine the suitability of the brake motor for the intended task and play a crucial role in achieving efficient and reliable operation. Here’s a detailed explanation of the key factors that should be considered when selecting a brake motor:

1. Load Characteristics: The characteristics of the load being driven by the brake motor are essential considerations. Factors such as load size, weight, and inertia influence the torque, power, and braking requirements of the motor. It is crucial to accurately assess the load characteristics to select a brake motor with the appropriate power rating, torque capacity, and braking capability to handle the specific load requirements effectively.

2. Stopping Requirements: The desired stopping performance of the brake motor is another critical factor to consider. Different applications may have specific stopping time, speed, or precision requirements. The brake motor should be selected based on its ability to meet these stopping requirements, such as adjustable braking torque, controlled response time, and stability during stopping. Understanding the desired stopping behavior is crucial for selecting a brake motor that can provide the necessary control and accuracy.

3. Environmental Conditions: The operating environment in which the brake motor will be installed plays a significant role in its selection. Factors such as temperature, humidity, dust, vibration, and corrosive substances can affect the performance and lifespan of the motor. It is essential to choose a brake motor that is designed to withstand the specific environmental conditions of the application, ensuring reliable and durable operation over time.

4. Mounting and Space Constraints: The available space and mounting requirements should be considered when selecting a brake motor. The physical dimensions and mounting options of the motor should align with the space constraints and mounting configuration of the application. It is crucial to ensure that the brake motor can be properly installed and integrated into the existing machinery or system without compromising the performance or safety of the overall setup.

5. Power Supply: The availability and characteristics of the power supply should be taken into account. The voltage, frequency, and power quality of the electrical supply should match the specifications of the brake motor. It is important to consider factors such as single-phase or three-phase power supply, voltage fluctuations, and compatibility with other electrical components to ensure proper operation and avoid electrical issues or motor damage.

6. Brake Type and Design: Different brake types, such as electromagnetic brakes or spring-loaded brakes, offer specific advantages and considerations. The choice of brake type should align with the requirements of the application, taking into account factors such as braking torque, response time, and reliability. The design features of the brake, such as braking surface area, cooling methods, and wear indicators, should also be evaluated to ensure efficient and long-lasting braking performance.

7. Regulatory and Safety Standards: Compliance with applicable regulatory and safety standards is crucial when selecting a brake motor. Depending on the industry and application, specific standards and certifications may be required. It is essential to choose a brake motor that meets the necessary standards and safety requirements to ensure the protection of personnel, equipment, and compliance with legal obligations.

8. Cost and Lifecycle Considerations: Finally, the cost-effectiveness and lifecycle considerations should be evaluated. This includes factors such as initial investment, maintenance requirements, expected lifespan, and availability of spare parts. It is important to strike a balance between upfront costs and long-term reliability, selecting a brake motor that offers a favorable cost-to-performance ratio and aligns with the expected lifecycle and maintenance budget.

Considering these factors when selecting a brake motor helps ensure that the chosen motor is well-suited for the intended task, provides reliable and efficient operation, and meets the specific requirements of the application. Proper evaluation and assessment of these factors contribute to the overall success and performance of the brake motor in its designated task.

brake motor

How do brake motors handle variations in load and stopping requirements?

Brake motors are designed to handle variations in load and stopping requirements by incorporating specific features and mechanisms that allow for flexibility and adaptability. These features enable brake motors to effectively respond to changes in load conditions and meet the diverse stopping requirements of different applications. Here’s a detailed explanation of how brake motors handle variations in load and stopping requirements:

1. Adjustable Braking Torque: Brake motors often have adjustable braking torque, allowing operators to modify the stopping force according to the specific load requirements. By adjusting the braking torque, brake motors can accommodate variations in load size, weight, and inertia. Higher braking torque can be set for heavier loads, while lower braking torque can be selected for lighter loads, ensuring optimal stopping performance and preventing excessive wear or damage to the braking system.

2. Controlled Response Time: Brake motors provide controlled response times, allowing for precise and efficient stopping according to the application requirements. The response time refers to the duration between the command to stop and the actual cessation of rotation. Brake motors can be designed with adjustable response times, enabling operators to set the desired stopping speed based on the load characteristics and safety considerations. This flexibility ensures that the braking action is appropriately matched to the load and stopping requirements.

3. Dynamic Braking: Dynamic braking is a feature found in some brake motors that helps handle variations in load and stopping requirements. When the motor is de-energized, dynamic braking converts the kinetic energy of the rotating load into electrical energy, which is dissipated as heat through a resistor or regenerative braking system. This braking mechanism allows brake motors to handle different load conditions and varying stopping requirements, dissipating excess energy and bringing the rotating equipment to a controlled stop.

4. Integrated Control Systems: Brake motors often come equipped with integrated control systems that allow for customized programming and adjustment of the braking parameters. These control systems enable operators to adapt the braking performance based on the load characteristics and stopping requirements. By adjusting parameters such as braking torque, response time, and braking profiles, brake motors can handle variations in load and achieve the desired stopping performance for different applications.

5. Monitoring and Feedback: Some brake motor systems incorporate monitoring and feedback mechanisms to provide real-time information about the load conditions and stopping performance. This feedback can include data on motor temperature, current consumption, or position feedback from encoders or sensors. By continuously monitoring these parameters, brake motors can dynamically adjust their braking action to accommodate variations in load and ensure optimal stopping performance.

6. Adaptable Brake Design: Brake motors are designed with consideration for load variations and stopping requirements. The brake design takes into account factors such as braking surface area, material composition, and cooling methods. These design features allow brake motors to handle different load conditions effectively and provide consistent and reliable stopping performance under varying circumstances.

By incorporating adjustable braking torque, controlled response time, dynamic braking, integrated control systems, monitoring and feedback mechanisms, and adaptable brake designs, brake motors can handle variations in load and stopping requirements. These features enhance the versatility and performance of brake motors, making them suitable for a wide range of applications across different industries.

China wholesaler Elevator Motor with Disc Brake Passenger Elevator Components Elevator Parts Sheave 320mm   vacuum pump design		China wholesaler Elevator Motor with Disc Brake Passenger Elevator Components Elevator Parts Sheave 320mm   vacuum pump design
editor by CX 2024-04-22