Product Description

Product Description

Aluminum shell 0.12kw-315kw three-phase asynchronous motor 

The performance of YE2 series high-efficiency three-phase asynchronous motors conforms to the national standard GB/T11707.
YE2 series of high-efficiency motors are energy-saving and environmentally friendly, using new technologies, new processes and new materials, so that the efficiency index of the motor completely reaches the index level of IE2. The motor uses class F insulation, and the temperature rise of the whole series is assessed according to class B, which greatly improves Safety and reliability. It can be widely used in various mechanical transmission equipment such as machine tools, fans, pumps, compressors, packaging machinery, mining machinery, construction machinery and so on.
The power can meet 0.18KW-900kw, the normal voltage is 380v, and the voltage can be customized 415v 430v, etc., the speed has 2 poles, 4 poles, 6 poles and 8 poles.The normal frequency is 50hz, 60hz needs to be customized, the cooling method is ic411, the protection level is IP55, and the working system is S1.
Installation structure B3 foot ;B5 conventional flange ;B35 foot and conventional flange.

Motor Features:

1. Frame size:H56-355;
2. Power:0.12-315Kw;
3. Voltage: 380V;

4. Rated Frequency: 50 Hz / 60 Hz;

5. Poles: 2 / 4 / 6 / 8 / 10

6. Speed: 590 -2980 r/min

7. Ambient Temperature: -15°C-40°C 

8. Model of CONEECTION: Y-Connection for 3 KW motor or less while Delta-Connection for 4 KW motor or more;

9. Mounting:  B3; B5; B35; B14; B34; 

10. Current: 1.5-465 A (AC);

11. Duty: continuous (S1);

12. Insulation Class:  B;

13. Protection Class:  IP44,IP54,IP55;

14. Frame material: aluminum body(56-132 frame), cast iron(71-355 frame)

15. Terminal box : Top or Side 

16. Cooling Method: IC411 Standards;

17. Altitude: No more than 1,000 meters above sea level;

18. Packing: 63-112 frame be packaged by carton&pallets

                   132-355 frame be packaged by plywood case;

19. Certifications: CE, CCC, ISO9001: 2008

 

Installation Instructions

    Three-phase Asynchronous Electric Motor
1). Power:  0.12KW-315KW;
2). Frame:  H56 to 355;
3). Shell:   cast iron body , aluminum body ;
4). Pole:  2/4/6/8 poles;
5). Mounting arrangement:  B3/B5/B14/B35/B34 or other;
6). Voltage:   220V, 380V, 400V, 415V, 440V or on request (50Hz or 60Hz);
7). Protection class:  IP54 / IP55 /IP65;
8). Duty/Rating:  S1 (Continuous);
9). Cooling method:   IC411 (SELF-FAN cooling);
10). Insulation class:   F;
11).Standard:  (IEC) EN60034-1 & EN1065714-1.

 

Technical Data

technical parameter

 

Model

 

Output

 

Full Load

75%load

50%load

 

 

Ist/TN

 

 

Tst/TN

 

Tmax/TN

KW

HP

Current(A)

Speed(r/min)

Eff(%)

Power factor

Eff(%)

Power

factor

Eff(%)

Power

factor

380V 50Hz Synchronous Speed 3000r/min(2 poles)
MS56M1-2 0.09 0.12 0.30 2700 58.0 0.78 56.2 0.77 54.0 0.74 2.2 5.5 2.2
MS56M2-2 0.12 0.18 0.38 2700 60.0 0.79 58.5 0.78 56.0 0.75 2.2 5.5 2.2
MS63M1-2 0.18 0.25 0.53 2720 63.0 0.80 62.0 0.80 60.5 0.76 2.2 5.5 2.2
MS63M2-2 0.25 0.33 0.63 2720 65.0 0.81 64.0 0.80 62.5 0.77 2.2 5.5 2.2
MS71M1-2 0.37 0.50 0.99 2740 66.0 0.81 65.0 0.80 63.5 0.78 2.2 6.1 2.2
MS71M2-2 0.55 0.75 1.40 2740 71.0 0.82 70.0 0.82 68.5 0.79 2.2 6.1 2.3
MS80M1-2 0.75 1 1.83 2835 77.4 0.83 72.0 0.83 70.2 0.80 2.2 6.1 2.3
MS80M2-2 1.1 1.5 2.58 2835 79.6 0.84 75.1 0.83 73.0 0.80 2.2 7.0 2.3
MS90S-2 1.5 2 3.43 2845 81.3 0.84 77.0 0.85 70.0 0.81 2.2 7.0 2.3
MS90L-2 2.2 3 4.85 2845 83.2 0.85 80.0 0.85 78.0 0.84 2.2 7.0 2.3
MS100L-2 3.0 4 6.31 2875 84.6 0.87 81.0 0.86 79.3 0.86 2.2 7.0 2.3
MS112M-2 4.0 5.5 8.10 2895 85.8 0.88 83.5 0.87 81.0 0.84 2.2 7.5 2.3
MS132S1-2 5.5 7.5 11.0 2905 87.0 0.88 84.3 0.89 83.0 0.84 2.2 7.5 2.3
MS132S2-2 7.5 10 14.9 2905 88.1 0.88 85.9 0.87 83.7 0.84 2.2 7.5 2.3
MS160M1-2 11 15 21.3 2935 89.4 0.89 86.8 0.89 84.1 0.84 2.2 7.5 2.3
MS160M2-2 15 20 28.8 2935 90.3 0.89 88.0 0.89 86.4 0.85 2.2 7.5 2.3
MS160L-2 18.5 25 34.7 2935 90.9 0.90 89.0 0.88 86.8 0.86 2.2 7.5 2.3
 380V 50Hz Synchronous Speed 1500/min(4poles)
MS56M1-4 0.06 0.08 0.26 1300 53.0 0.70 51.8 0.65 50.0 0.53 2.1 5.2 2.2
MS56M2-4 0.09 0.12 0.35 1300 55.0 0.71 53.8 0.67 52.0 0.55 2.1 5.2 2.2
MS63M1-4 0.12 0.18 0.42 1310 57.0 0.72 56.1 0.69 53.9 0.57 2.1 5.2 2.2
MS63M2-4 0.18 0.25 0.62 1310 60.0 0.73 58.5 0.70 56.7 0.59 2.1 5.2 2.2
MS71M1-4 0.25 0.33 0.79 1330 65.0 0.74 62.4 0.73 59.3 0.59 2.1 5.2 2.2
MS71M2-4 0.37 0.50 1.12 1330 67.0 0.75 65.3 0.74 60.8 0.63 2.1 5.2 2.2
MS80M1-4 0.55 0.75 1.57 1395 71.0 0.75 69.2 0.74 67.2 0.64 2.4 5.2 2.3
MS80M2-4 0.75 1.0 2.03 1395 79.6 0.76 71.7 0.75 69.8 0.67 2.3 6.0 2.3
MS90S-4 1.1 1.5 2.89 1405 81.4 0.77 73.1 0.75 70.8 0.67 2.3 6.0 2.3
MS90L-4 1.5 2 3.70 1405 82.8 0.79 76.1 0.76 73.7 0.69 2.3 6.0 2.3
MS100L1-4 2.2 3 5.16 1435 84.3 0.81 78.0 0.79 75.5 0.69 2.3 7.0 2.3
MS100L2-4 3.0 4 6.78 1435 85.5 0.82 79.9 0.78 77.5 0.70 2.3 7.0 2.3
MS112M-4 4.0 5.5 8.80 1445 86.6 0.82 81.9 0.79 79.6 0.70 2.3 7.0 2.3
MS132S-4 5.5 7.5 11.7 1445 87.7 0.83 82.8 0.81 80.4 0.73 2.3 7.0 2.3
MS132M-4 7 10 15.6 1445 88.7 0.84 84.8 0.82 82.6 0.74 2.3 7.0 2.3
MS160M-4 11 15 22.3 1465 89.8 0.84 85.8 0.83 83.8 0.75 2.2 7.0 2.3
MS160L-4 15 20 30.1 1465 90.6 0.85 90.0 0.83 88.5 0.75 2.2 7.5 2.3
 380V 50Hz Synchronous Speed 1500/min(6 Poles)
MS71M1-6 0.18 0.25 0.74 850 56.0 0.66 54.6 0.66 53.0 0.65 1.9 4.0 2.0
MS71M2-6 0.25 0.33 0.95 850 59.0 0.68 57.5 0.68 56.1 0.62 1.9 4.0 2.0
MS80M1-6 0.35 0.50 1.30 895 62.0 0.70 60.5 0.69 59.1 0.64 1.9 4.7 2.0
MS80M2-6 0.55 0.75 1.79 895 65.0 0.72 63.3 0.71 60.1 0.64 1.9 4.7 2.1
MS90S-6 0.75 1 2.29 915 75.9 0.72 67.3 0.72 66.3 0.65 2.0 5.5 2.1
MS90L-6 1.1 1.5 3.18 915 78.1 0.73 70.2 0.72 38.0 0.66 2.0 5.5 2.2
MS100L-6 1.5 2 3.94 945 79.8 0.75 74.0 0.75 71.0 0.68 2.0 5.5 2.1
MS112M-6 2.2 3 5.60 945 81.8 0.75 77.1 0.77 75.1 0.69 2.0 6.5 2.1
MS132M1-6 3.0 4 7.40 965 83.3 0.76 78.9 0.77 76.1 0.69 2.1 6.5 2.1
MS132M2-6 4.0 5.5 9.80 965 84.6 0.76 80.0 0.76 77.5 0.70 2.1 6.5 2.1
MS160M-6 7.5 10 17.0 975 87.2 0.77 83.4 0.77 82.4 0.70 2.0 6.5 2.1
MS160L-6 11 15 24.2 975 88.7 0.78 86.6 0.78 84.8 0.72 2.0 6.5 2.1
380V 50Hz Synchronous Speed 750min(8 Poles)
MS80M1-8 0.18 0.25 0.88 630 51.0 0.61 47.9 0.52 44.6 0.54 1.8 4.0 1.9
MS80M2-8 0.25 0.33 1.15 640 54.0 0.61 48.9 0.54 45.3 0.55 1.8 4.0 1.9
MS90S-8 0.37 0.50 1.49 660 62.0 0.61 55.6 0.57 50.7 0.56 1.8 4.0 1.9
MS90L-8 0.55 0.75 2.18 660 63.0 0.61 55.9 0.58 50.9 0.59 1.8 4.0 2.0
MS100L1-8 0.75 1 2.17 690 71.0 0.67 60.9 0.65 59.7 0.56 1.8 4.0 2.0
MS100L2-8 1.1 1.5 2.39 690 73.0 0.69 72.0 0.61 59.8 0.57 1.8 4.0 2.0
MS112M-8 1.5 2 4.50 680 75.0 0.69 74.2 0.64 59.8 0.58 1.8 5.0 2.0
MS132S-8 2.2 3 6.00 710 78.0 0.71 77.2 0.61 60.1 0.58 1.8 6.0 2.0
MS132M-8 3.0 4 7.90 710 79.0 0.73 78.5 0.62 60.0 0.59 1.8 6.0 2.0
MS160M1-8 4.0 5.5 10.3 720 81.0 0.73 80.2 0.63 61.0 0.58 1.9 6.0 2.0
MS160M2-8 5.5 7.5 13.6 720 83.0 0.74 81.2 0.61 62.0 0.59 2.0 6.0 2.0
MS160L-8 7.5 10 17.8 720 85.5 0.75 84.5 0.63 65.9 0.59 2.0 6.0 2.0

 

Detailed Photos

 

 

Our OEM Motors, Diesel generator sets ,Alternators are talior made to fit the OEM customer’s application.  Our  based Engineering Design team work with you to ensure the motor meets your individual needs.

2 ,4,6 ,8 and 10 pole operation.  with CE Approvals available
All Motors, Diesel generator sets ,Alternators may be designed for optional voltages and frequencies.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Variable Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 2
Customization:
Available

|

brake motor

Are there any emerging trends in brake motor technology, such as digital control?

Yes, there are emerging trends in brake motor technology that are shaping the future of this field. One such trend is the adoption of digital control systems, which offer several advantages over traditional control methods. These advancements in digital control are revolutionizing brake motor technology and unlocking new possibilities for improved performance, efficiency, and integration within industrial processes. Here’s a detailed explanation of the emerging trends in brake motor technology, including the shift towards digital control:

  • Digital Control Systems: Digital control systems are becoming increasingly prevalent in brake motor technology. These systems utilize advanced microprocessors, sensors, and software algorithms to provide precise control, monitoring, and diagnostics. Digital control enables enhanced motor performance, optimized energy efficiency, and improved operational flexibility. It allows for seamless integration with other digital systems, such as programmable logic controllers (PLCs) or industrial automation networks, facilitating intelligent and interconnected manufacturing processes.
  • Intelligent Motor Control: The integration of digital control systems with brake motors enables intelligent motor control capabilities. These systems use sensor feedback and real-time data analysis to dynamically adjust motor parameters, such as speed, torque, and braking force, based on the changing operating conditions. Intelligent motor control optimizes motor performance, minimizes energy consumption, and enhances overall system efficiency. It also enables predictive maintenance by continuously monitoring motor health and providing early warnings for potential faults or failures.
  • Network Connectivity and Industry 4.0: Brake motors are increasingly designed to be part of interconnected networks in line with the principles of Industry 4.0. With digital control systems, brake motors can be connected to industrial networks, enabling real-time data exchange, remote monitoring, and control. This connectivity facilitates centralized monitoring and management of multiple brake motors, improves system coordination, and enables predictive analytics for proactive decision-making. It also allows for seamless integration with other smart devices and systems, paving the way for advanced automation and optimization in manufacturing processes.
  • Condition Monitoring and Predictive Maintenance: Digital control systems in brake motors enable advanced condition monitoring and predictive maintenance capabilities. Sensors integrated into the motor can collect data on parameters such as temperature, vibration, and load conditions. This data is processed and analyzed in real-time, allowing for early detection of potential issues or performance deviations. By implementing predictive maintenance strategies, manufacturers can schedule maintenance activities more efficiently, reduce unplanned downtime, and optimize the lifespan and reliability of brake motors.
  • Energy Efficiency Optimization: Digital control systems provide enhanced opportunities for optimizing energy efficiency in brake motors. These systems can intelligently adjust motor parameters based on load demand, operating conditions, and energy consumption patterns. Advanced algorithms and control techniques optimize the motor’s energy usage, reducing power wastage and maximizing overall energy efficiency. Digital control also enables integration with energy management systems, allowing for better monitoring and control of energy consumption across the entire manufacturing process.
  • Data Analytics and Machine Learning: The integration of digital control systems with brake motors opens up possibilities for leveraging data analytics and machine learning techniques. By collecting and analyzing large volumes of motor performance data, manufacturers can gain valuable insights into process optimization, fault detection, and performance trends. Machine learning algorithms can be applied to identify patterns, predict motor behavior, and optimize control strategies. This data-driven approach enhances decision-making, improves productivity, and enables continuous improvement in manufacturing processes.

In summary, emerging trends in brake motor technology include the adoption of digital control systems, intelligent motor control, network connectivity, condition monitoring, predictive maintenance, energy efficiency optimization, and data analytics. These trends are driving innovation in brake motor technology, improving performance, efficiency, and integration within manufacturing processes. As digital control becomes more prevalent, brake motors are poised to play a vital role in the era of smart manufacturing and industrial automation.

brake motor

How do manufacturers ensure the quality and reliability of brake motors?

Manufacturers employ various processes and measures to ensure the quality and reliability of brake motors. These processes involve rigorous testing, adherence to industry standards, quality control procedures, and continuous improvement initiatives. Here’s a detailed explanation of how manufacturers ensure the quality and reliability of brake motors:

  • Design and Engineering: Manufacturers invest considerable effort in the design and engineering phase of brake motors. They employ experienced engineers and designers who follow industry best practices and utilize advanced design tools to develop motors with robust and reliable braking systems. Thorough analysis, simulations, and prototyping are conducted to optimize the motor’s performance, efficiency, and safety features.
  • Material Selection: High-quality materials are chosen for the construction of brake motors. Manufacturers carefully select components such as motor windings, brake discs, brake pads, and housing materials to ensure durability, heat resistance, and optimal friction characteristics. The use of quality materials enhances the motor’s reliability and contributes to its long-term performance.
  • Manufacturing Processes: Stringent manufacturing processes are implemented to ensure consistent quality and reliability. Manufacturers employ advanced machinery and automation techniques for precision assembly and production. Strict quality control measures are applied at each stage of manufacturing to detect and rectify any defects or deviations from specifications.
  • Testing and Quality Assurance: Brake motors undergo comprehensive testing and quality assurance procedures before they are released to the market. These tests include performance testing, load testing, endurance testing, and environmental testing. Manufacturers verify that the motors meet or exceed industry standards and performance specifications. Additionally, they conduct safety tests to ensure compliance with applicable safety regulations and standards.
  • Certifications and Compliance: Manufacturers seek certifications and compliance with relevant industry standards and regulations. This may include certifications such as ISO 9001 for quality management systems or certifications specific to the motor industry, such as IEC (International Electrotechnical Commission) standards. Compliance with these standards demonstrates the manufacturer’s commitment to producing high-quality and reliable brake motors.
  • Quality Control and Inspection: Manufacturers implement robust quality control processes throughout the production cycle. This includes inspection of raw materials, in-process inspections during manufacturing, and final inspections before shipment. Quality control personnel conduct visual inspections, dimensional checks, and performance evaluations to ensure that each brake motor meets the specified quality criteria.
  • Continuous Improvement: Manufacturers prioritize continuous improvement initiatives to enhance the quality and reliability of brake motors. They actively seek customer feedback, monitor field performance, and conduct post-production evaluations to identify areas for improvement. This feedback loop helps manufacturers refine their designs, manufacturing processes, and quality control procedures, leading to increased reliability and customer satisfaction.
  • Customer Support and Warranty: Manufacturers provide comprehensive customer support and warranty programs for their brake motors. They offer technical assistance, troubleshooting guides, and maintenance recommendations to customers. Warranty coverage ensures that any manufacturing defects or malfunctions are addressed promptly, bolstering customer confidence in the quality and reliability of the brake motors.

By employing robust design and engineering processes, meticulous material selection, stringent manufacturing processes, comprehensive testing and quality assurance procedures, certifications and compliance with industry standards, rigorous quality control and inspection measures, continuous improvement initiatives, and dedicated customer support and warranty programs, manufacturers ensure the quality and reliability of brake motors. These measures contribute to the production of high-performance motors that meet the safety, durability, and performance requirements of industrial and manufacturing applications.

brake motor

How do brake motors ensure controlled and rapid stopping of rotating equipment?

Brake motors are designed to ensure controlled and rapid stopping of rotating equipment by employing specific braking mechanisms. These mechanisms are integrated into the motor to provide efficient and precise stopping capabilities. Here’s a detailed explanation of how brake motors achieve controlled and rapid stopping:

1. Electromagnetic Brakes: Many brake motors utilize electromagnetic brakes as the primary braking mechanism. These brakes consist of an electromagnetic coil and a brake disc or plate. When the power to the motor is cut off or the motor is de-energized, the electromagnetic coil generates a magnetic field that attracts the brake disc or plate, creating friction and halting the rotation of the motor shaft. The strength of the magnetic field and the design of the brake determine the stopping torque and speed, allowing for controlled and rapid stopping of the rotating equipment.

2. Spring-Loaded Brakes: Some brake motors employ spring-loaded brakes. These brakes consist of a spring that applies pressure on the brake disc or plate to create friction and stop the rotation. When the power is cut off or the motor is de-energized, the spring is released, pressing the brake disc against a stationary surface and generating braking force. The spring-loaded mechanism ensures quick engagement of the brake, resulting in rapid stopping of the rotating equipment.

3. Dynamic Braking: Dynamic braking is another technique used in brake motors to achieve controlled stopping. It involves converting the kinetic energy of the rotating equipment into electrical energy, which is dissipated as heat through a resistor or regenerative braking system. When the power is cut off or the motor is de-energized, the motor acts as a generator, and the electrical energy generated by the rotating equipment is converted into heat through the braking system. This dissipation of energy slows down and stops the rotation of the equipment in a controlled manner.

4. Control Systems: Brake motors are often integrated with control systems that enable precise control over the braking process. These control systems allow for adjustable braking torque, response time, and braking profiles, depending on the specific requirements of the application. By adjusting these parameters, operators can achieve the desired level of control and stopping performance, ensuring both safety and operational efficiency.

5. Coordinated Motor and Brake Design: Brake motors are designed with careful consideration of the motor and brake compatibility. The motor’s characteristics, such as torque, speed, and power rating, are matched with the braking system’s capabilities to ensure optimal performance. This coordinated design ensures that the brake can effectively stop the motor within the desired time frame and with the necessary braking force, achieving controlled and rapid stopping of the rotating equipment.

Overall, brake motors employ electromagnetic brakes, spring-loaded brakes, dynamic braking, and control systems to achieve controlled and rapid stopping of rotating equipment. These braking mechanisms, combined with coordinated motor and brake design, enable precise control over the stopping process, ensuring the safety of operators, protecting equipment from damage, and maintaining operational efficiency.

China manufacturer High Quality 3HP Electromagnetic Brake Three-Phase Asynchronous Brake Motor   vacuum pump booster	China manufacturer High Quality 3HP Electromagnetic Brake Three-Phase Asynchronous Brake Motor   vacuum pump booster
editor by CX 2024-05-14