Product Description

Description:
Step angel:1.8°/0.9°
Holding torque:0.8-3.2N.m/0.5-1.5N.m
Motor size: NEMA23 57mm
Options:Brake,Encoder,Plantary gear box 

CE and RoHS approved

Applications
Use for robots stepper motor, electric automatic equipment stepping motor, medical instrument stepping motor, advertisement instrument stepper motor, lighting& audio equipment stepper motor, printer stepper motor, textile machinery stepper motor,CNC router stepper motor,3D Printer stepper motor.

nema23, 1.8 degree, 2 phase
Model Number Holding torque  Rated Cuttent Wiring Resisitance Winding Inductance Rotor Inertia Mass Motor Length Connection Mode
Single/Dual Shaft N.m min A/Phase Ω/Phase @20ºC Mh/Phase g.cm² kg mm  
JT252BP10_ 0.6 1 4.2 8.9 140 0.46 42.5 Connector
JT252BP20_ 2 1.2 2.1
JT252BP30_ 3 0.51 1
JT253BP10_ 0.8 1 4.7 10.8 180 0.52 45.5 Connector
JT253BP20_ 2 1.25 2.7
JT253BP30_ 3 0.57 1.2
JT254BP10_ 1 1 5.5 16 240 0.64 51.5 Connector
JT254BP20_ 2 1.5 4.3
JT254BP30_ 3 0.7 1.75
JT255BP20_ 1.2 2 1.6 5.2 280 0.72 55.5 Connector
JT255BP30_ 3 0.7 2.4
JT255BL40_ 4 0.45 1.4 Lead-wire
JT256BP20_ 1.7 2 2 6 350 0.85 64.5 Connector
JT256BP30_ 3 0.9 2.7
JT256BL40_ 4 0.5 1.6 Lead-wire
JT257BP30_ 2 3 1.1 4.2 480 1.1 76.5 Connector
JT257BL40_ 4 0.65 2.35 Lead-wire
JT257BL50_ 5 0.37 1.8
JT258BP30_ 2.2 3 1.2 4.5 520 1.2 80.5 Connector
JT258BL40_ 4 0.65 25 Lead-wire
JT258BL50_ 5 0.36 1.76
JT2510BL40_ 3 4 0.88 3.2 720 1.5 101 Lead-wire
JT2510BL50_ 5 0.5 2.3
JT252UP30_ 0.5 3 0.6 0.5 140 0.46 42.5 Connector
JT255UP30_ 0.9 3 1.55 0.9 280 0.72 55.5
JT257UP30_ 1.5 3 2.4 1.4 480 1.1 76.5

nema23, 0.9 degree, 2 phase
Model Number Holding torque  Rated Cuttent Wiring Resisitance Winding Inductance Rotor Inertia Mass Motor Length Connection Mode
Single/Dual Shaft N.m min A/Phase Ω/Phase @20ºC Mh/Phase g.cm² kg mm  
JT452BP30_ 0.5 3 0.55 2.3 140 0.46 42.5 Connector
JT455BP30_ 0.9 3 0.75 3.7 280 72 55.5
JT457BP30_ 1.5 3 1.1 6 480 1.1 76.5

nema23, 1.8 degree, Brake
Model Number Holding torque  Rated Cuttent Wiring Resisitance Winding Inductance Rotor Inertia Brake static friction torque Volt/Watt Motor Weight
Single/Dual Shaft N.m min A/Phase Ω/Phase @20ºC Mh/Phase g.cm² N.m v/w kg
JT255B40M 1.2 4 0.45 1.4 280 2 24VDC/5W 1.25
JT257B50M 2 5 0.37 1.8 480 1.6
* M in the model is brake motor

nema23, 1.8 degree, IP65, 2 phase
Model Number Holding torque  Rated Cuttent Wiring Resisitance Winding Inductance Rotor Inertia Protection level Motor Weight
Single/Dual Shaft N.m min A/Phase Ω/Phase @20ºC Mh/Phase g.cm² IPXX kg
JT255B40A 1.2 4 0.45 1.4 280 IP65 1.5
JT257B50A 2 5 0.37 1.8 480 2.4
* Length customizable

  

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Printing Equipment
Speed: Variable Speed
Number of Stator: Two-Phase
Excitation Mode: HB-Hybrid
Function: Driving
Number of Poles: 2
Samples:
US$ 11/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brake motor

Can brake motors be used in conjunction with other motion control methods?

Yes, brake motors can be used in conjunction with other motion control methods to achieve precise and efficient control over mechanical systems. Brake motors provide braking functionality, while other motion control methods offer various means of controlling the speed, position, and acceleration of the system. Combining brake motors with other motion control methods allows for enhanced overall system performance and versatility. Here’s a detailed explanation of how brake motors can be used in conjunction with other motion control methods:

  • Variable Frequency Drives (VFDs): Brake motors can be used in conjunction with VFDs, which are electronic devices that control the speed and torque of an electric motor. VFDs enable precise speed control, acceleration, and deceleration of the motor by adjusting the frequency and voltage supplied to the motor. By incorporating a brake motor with a VFD, the system benefits from both the braking capability of the motor and the advanced speed control provided by the VFD.
  • Servo Systems: Servo systems are motion control systems that utilize servo motors and feedback mechanisms to achieve highly accurate control over position, velocity, and torque. In certain applications where rapid and precise positioning is required, brake motors can be used in conjunction with servo systems. The brake motor provides the braking function when the system needs to hold position or decelerate rapidly, while the servo system controls the dynamic motion and positioning tasks.
  • Stepper Motor Control: Stepper motors are widely used in applications that require precise control over position and speed. Brake motors can be utilized alongside stepper motor control systems to provide braking functionality when the motor needs to hold position or prevent undesired movement. This combination allows for improved stability and control over the stepper motor system, especially in applications where holding torque and quick deceleration are important.
  • Hydraulic or Pneumatic Systems: In some industrial applications, hydraulic or pneumatic systems are used for motion control. Brake motors can be integrated into these systems to provide additional braking capability when needed. For example, a brake motor can be employed to hold a specific position or provide emergency braking in a hydraulic or pneumatic actuator system, enhancing safety and control.
  • Control Algorithms and Systems: Brake motors can also be utilized in conjunction with various control algorithms and systems to achieve specific motion control objectives. These control algorithms can include closed-loop feedback control, PID (Proportional-Integral-Derivative) control, or advanced motion control algorithms. By incorporating a brake motor into the system, the control algorithms can utilize the braking functionality to enhance overall system performance and stability.

The combination of brake motors with other motion control methods offers a wide range of possibilities for achieving precise, efficient, and safe control over mechanical systems. Whether it is in conjunction with VFDs, servo systems, stepper motor control, hydraulic or pneumatic systems, or specific control algorithms, brake motors can complement and enhance the functionality of other motion control methods. This integration allows for customized and optimized control solutions to meet the specific requirements of diverse applications.

brake motor

How does a brake motor enhance safety in industrial and manufacturing settings?

In industrial and manufacturing settings, brake motors play a crucial role in enhancing safety by providing reliable braking and control mechanisms. These motors are specifically designed to address safety concerns and mitigate potential risks associated with rotating machinery and equipment. Here’s a detailed explanation of how brake motors enhance safety in industrial and manufacturing settings:

1. Controlled Stopping: Brake motors offer controlled stopping capabilities, allowing for precise and predictable deceleration of rotating machinery. This controlled stopping helps prevent abrupt stops or sudden changes in motion, reducing the risk of accidents, equipment damage, and injury to personnel. By providing smooth and controlled stopping, brake motors enhance safety during machine shutdowns, emergency stops, or power loss situations.

2. Emergency Stop Functionality: Brake motors often incorporate emergency stop functionality as a safety feature. In case of an emergency or hazardous situation, operators can activate the emergency stop function to immediately halt the motor and associated machinery. This rapid and reliable stopping capability helps prevent accidents, injuries, and damage to equipment, providing an essential safety measure in industrial environments.

3. Load Holding Capability: Brake motors have the ability to hold loads in position when the motor is not actively rotating. This load holding capability is particularly important for applications where the load needs to be securely held in place, such as vertical lifting mechanisms or inclined conveyors. By preventing unintended movement or drift of the load, brake motors ensure safe operation and minimize the risk of uncontrolled motion that could lead to accidents or damage.

4. Overload Protection: Brake motors often incorporate overload protection mechanisms to safeguard against excessive loads. These protection features can include thermal overload protection, current limiters, or torque limiters. By detecting and responding to overload conditions, brake motors help prevent motor overheating, component failure, and potential hazards caused by overburdened machinery. This protection enhances the safety of personnel and prevents damage to equipment.

5. Failsafe Braking: Brake motors are designed with failsafe braking systems that ensure reliable braking even in the event of power loss or motor failure. These systems can use spring-loaded brakes or electromagnetic brakes that engage automatically when power is cut off or when a fault is detected. Failsafe braking prevents uncontrolled motion and maintains the position of rotating machinery, reducing the risk of accidents, injury, or damage during power interruptions or motor failures.

6. Integration with Safety Systems: Brake motors can be integrated into safety systems and control architectures to enhance overall safety in industrial settings. They can be connected to safety relays, programmable logic controllers (PLCs), or safety-rated drives to enable advanced safety functionalities such as safe torque off (STO) or safe braking control. This integration ensures that the brake motor operates in compliance with safety standards and facilitates coordinated safety measures across the machinery or production line.

7. Compliance with Safety Standards: Brake motors are designed and manufactured in compliance with industry-specific safety standards and regulations. These standards, such as ISO standards or Machinery Directive requirements, define the safety criteria and performance expectations for rotating machinery. By using brake motors that meet these safety standards, industrial and manufacturing settings can ensure a higher level of safety, regulatory compliance, and risk mitigation.

8. Operator Safety: Brake motors also contribute to operator safety by reducing the risk of unintended movement or hazardous conditions. The controlled stopping and load holding capabilities of brake motors minimize the likelihood of unexpected machine behavior that could endanger operators. Additionally, the incorporation of safety features like emergency stop buttons or remote control options provides operators with convenient means to stop or control the machinery from a safe distance, reducing their exposure to potential hazards.

By providing controlled stopping, emergency stop functionality, load holding capability, overload protection, failsafe braking, integration with safety systems, compliance with safety standards, and operator safety enhancements, brake motors significantly enhance safety in industrial and manufacturing settings. These motors play a critical role in preventing accidents, injuries, and equipment damage, contributing to a safer working environment and ensuring the well-being of personnel.

brake motor

How do brake motors handle variations in load and stopping requirements?

Brake motors are designed to handle variations in load and stopping requirements by incorporating specific features and mechanisms that allow for flexibility and adaptability. These features enable brake motors to effectively respond to changes in load conditions and meet the diverse stopping requirements of different applications. Here’s a detailed explanation of how brake motors handle variations in load and stopping requirements:

1. Adjustable Braking Torque: Brake motors often have adjustable braking torque, allowing operators to modify the stopping force according to the specific load requirements. By adjusting the braking torque, brake motors can accommodate variations in load size, weight, and inertia. Higher braking torque can be set for heavier loads, while lower braking torque can be selected for lighter loads, ensuring optimal stopping performance and preventing excessive wear or damage to the braking system.

2. Controlled Response Time: Brake motors provide controlled response times, allowing for precise and efficient stopping according to the application requirements. The response time refers to the duration between the command to stop and the actual cessation of rotation. Brake motors can be designed with adjustable response times, enabling operators to set the desired stopping speed based on the load characteristics and safety considerations. This flexibility ensures that the braking action is appropriately matched to the load and stopping requirements.

3. Dynamic Braking: Dynamic braking is a feature found in some brake motors that helps handle variations in load and stopping requirements. When the motor is de-energized, dynamic braking converts the kinetic energy of the rotating load into electrical energy, which is dissipated as heat through a resistor or regenerative braking system. This braking mechanism allows brake motors to handle different load conditions and varying stopping requirements, dissipating excess energy and bringing the rotating equipment to a controlled stop.

4. Integrated Control Systems: Brake motors often come equipped with integrated control systems that allow for customized programming and adjustment of the braking parameters. These control systems enable operators to adapt the braking performance based on the load characteristics and stopping requirements. By adjusting parameters such as braking torque, response time, and braking profiles, brake motors can handle variations in load and achieve the desired stopping performance for different applications.

5. Monitoring and Feedback: Some brake motor systems incorporate monitoring and feedback mechanisms to provide real-time information about the load conditions and stopping performance. This feedback can include data on motor temperature, current consumption, or position feedback from encoders or sensors. By continuously monitoring these parameters, brake motors can dynamically adjust their braking action to accommodate variations in load and ensure optimal stopping performance.

6. Adaptable Brake Design: Brake motors are designed with consideration for load variations and stopping requirements. The brake design takes into account factors such as braking surface area, material composition, and cooling methods. These design features allow brake motors to handle different load conditions effectively and provide consistent and reliable stopping performance under varying circumstances.

By incorporating adjustable braking torque, controlled response time, dynamic braking, integrated control systems, monitoring and feedback mechanisms, and adaptable brake designs, brake motors can handle variations in load and stopping requirements. These features enhance the versatility and performance of brake motors, making them suitable for a wide range of applications across different industries.

China high quality 57mm 1.8 Degree NEMA23 2 Phase Stepper Stepping Motor with Brake   vacuum pump connector	China high quality 57mm 1.8 Degree NEMA23 2 Phase Stepper Stepping Motor with Brake   vacuum pump connector
editor by CX 2024-04-25