Product Description

Step angel:1.8°/0.9°
Holding torque:0.8-3.2N.m/0.5-1.5N.m
Motor size: NEMA23 57mm
Options:Brake,Encoder,Plantary gear box

Description:
permanent magnet stepping motor with brake
57mm 1.8 degree nema23 2 phase stepper stepping motor with 8 lead-wires
NEMA23 stepping motor , 57mm square stepper motor
2.2N.m Stepper motor , high torque stepper motor with 57mm size 

CE and RoHS approved

Applications
Use for robots stepper motor, electric automatic equipment stepping motor, medical instrument stepping motor, advertisement instrument stepper motor, lighting& audio equipment stepper motor, printer stepper motor, textile machinery stepper motor,CNC router stepper motor,3D Printer stepper motor.

nema23, 1.8 degree, 2 phase
Model Number Holding torque  Rated Cuttent Wiring Resisitance Winding Inductance Rotor Inertia Mass Motor Length Connection Mode
Single/Dual Shaft N.m min A/Phase Ω/Phase @20ºC Mh/Phase g.cm² kg mm  
JT252BP10_ 0.6 1 4.2 8.9 140 0.46 42.5 Connector
JT252BP20_ 2 1.2 2.1
JT252BP30_ 3 0.51 1
JT253BP10_ 0.8 1 4.7 10.8 180 0.52 45.5 Connector
JT253BP20_ 2 1.25 2.7
JT253BP30_ 3 0.57 1.2
JT254BP10_ 1 1 5.5 16 240 0.64 51.5 Connector
JT254BP20_ 2 1.5 4.3
JT254BP30_ 3 0.7 1.75
JT255BP20_ 1.2 2 1.6 5.2 280 0.72 55.5 Connector
JT255BP30_ 3 0.7 2.4
JT255BL40_ 4 0.45 1.4 Lead-wire
JT256BP20_ 1.7 2 2 6 350 0.85 64.5 Connector
JT256BP30_ 3 0.9 2.7
JT256BL40_ 4 0.5 1.6 Lead-wire
JT257BP30_ 2 3 1.1 4.2 480 1.1 76.5 Connector
JT257BL40_ 4 0.65 2.35 Lead-wire
JT257BL50_ 5 0.37 1.8
JT258BP30_ 2.2 3 1.2 4.5 520 1.2 80.5 Connector
JT258BL40_ 4 0.65 25 Lead-wire
JT258BL50_ 5 0.36 1.76
JT2510BL40_ 3 4 0.88 3.2 720 1.5 101 Lead-wire
JT2510BL50_ 5 0.5 2.3
JT252UP30_ 0.5 3 0.6 0.5 140 0.46 42.5 Connector
JT255UP30_ 0.9 3 1.55 0.9 280 0.72 55.5
JT257UP30_ 1.5 3 2.4 1.4 480 1.1 76.5

nema23, 0.9 degree, 2 phase
Model Number Holding torque  Rated Cuttent Wiring Resisitance Winding Inductance Rotor Inertia Mass Motor Length Connection Mode
Single/Dual Shaft N.m min A/Phase Ω/Phase @20ºC Mh/Phase g.cm² kg mm  
JT452BP30_ 0.5 3 0.55 2.3 140 0.46 42.5 Connector
JT455BP30_ 0.9 3 0.75 3.7 280 72 55.5
JT457BP30_ 1.5 3 1.1 6 480 1.1 76.5

nema23, 1.8 degree, Brake
Model Number Holding torque  Rated Cuttent Wiring Resisitance Winding Inductance Rotor Inertia Brake static friction torque Volt/Watt Motor Weight
Single/Dual Shaft N.m min A/Phase Ω/Phase @20ºC Mh/Phase g.cm² N.m v/w kg
JT255B40M 1.2 4 0.45 1.4 280 2 24VDC/5W 1.25
JT257B50M 2 5 0.37 1.8 480 1.6
* M in the model is brake motor

nema23, 1.8 degree, IP65, 2 phase
Model Number Holding torque  Rated Cuttent Wiring Resisitance Winding Inductance Rotor Inertia Protection level Motor Weight
Single/Dual Shaft N.m min A/Phase Ω/Phase @20ºC Mh/Phase g.cm² IPXX kg
JT255B40A 1.2 4 0.45 1.4 280 IP65 1.5
JT257B50A 2 5 0.37 1.8 480 2.4
* Length customizable

  

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Printing Equipment
Speed: Variable Speed
Number of Stator: Two-Phase
Samples:
US$ 11/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brake motor

How do brake motors ensure smooth and controlled movement in equipment?

Brake motors play a crucial role in ensuring smooth and controlled movement in equipment by providing reliable braking functionality. They work in coordination with the motor and other control systems to achieve precise control over the motion of the equipment. Here’s a detailed explanation of how brake motors ensure smooth and controlled movement in equipment:

  • Braking Capability: Brake motors are specifically designed to provide effective braking capability. When the power to the motor is cut off or when a braking signal is applied, the brake system engages, generating frictional forces that slow down and bring the equipment to a controlled stop. The brake torque generated by the motor helps prevent coasting or unintended movement, ensuring smooth and controlled deceleration.
  • Quick Response Time: Brake motors are engineered to have a quick response time, meaning that the brake engages rapidly once the control signal is applied. This quick response time allows for prompt and precise control over the movement of the equipment. By minimizing the delay between the initiation of the braking action and the actual engagement of the brake, brake motors contribute to smooth and controlled movement.
  • Adjustable Brake Torque: Brake motors often offer the ability to adjust the brake torque to suit the specific requirements of the equipment and application. The brake torque can be tailored to the load characteristics and operating conditions to achieve optimal braking performance. By adjusting the brake torque, brake motors ensure that the equipment decelerates smoothly and consistently, avoiding abrupt stops or jerky movements.
  • Brake Release Mechanisms: In addition to providing braking action, brake motors incorporate mechanisms to release the brake when the equipment needs to resume motion. These release mechanisms can be controlled manually or automatically, depending on the application. The controlled release of the brake ensures that the equipment starts moving smoothly and gradually, allowing for controlled acceleration.
  • Integration with Control Systems: Brake motors are integrated into the overall control systems of the equipment to achieve coordinated and synchronized movement. They work in conjunction with motor control devices, such as variable frequency drives (VFDs) or servo systems, to precisely control the speed, acceleration, and deceleration of the equipment. By seamlessly integrating with the control systems, brake motors contribute to the smooth and controlled movement of the equipment.
  • Compliance with Safety Standards: Brake motors are designed and manufactured in compliance with safety standards and regulations. They undergo rigorous testing and quality control measures to ensure reliable and consistent braking performance. By adhering to safety standards, brake motors help prevent sudden or uncontrolled movements that could pose a safety risk and ensure the equipment operates within acceptable limits.

By providing effective braking capability, quick response time, adjustable brake torque, release mechanisms, integration with control systems, and compliance with safety standards, brake motors ensure smooth and controlled movement in equipment. They enable precise control over the deceleration, stopping, and starting of the equipment, enhancing operational efficiency, safety, and overall performance.

brake motor

How do brake motors contribute to the efficiency of conveyor systems and material handling?

Brake motors play a crucial role in enhancing the efficiency of conveyor systems and material handling operations. They provide several advantages that improve the overall performance and productivity of these systems. Here’s a detailed explanation of how brake motors contribute to the efficiency of conveyor systems and material handling:

  • Precise Control: Brake motors offer precise control over the movement of conveyor systems. The braking mechanism allows for quick and accurate stopping, starting, and positioning of the conveyor belt or other material handling components. This precise control ensures efficient operation, minimizing the time and effort required to handle materials and reducing the risk of damage or accidents.
  • Speed Regulation: Brake motors can regulate the speed of conveyor systems, allowing operators to adjust the conveying speed according to the specific requirements of the materials being handled. This speed control capability enables efficient material flow, optimizing production processes and preventing bottlenecks or congestion. It also contributes to better synchronization with upstream or downstream processes, improving overall system efficiency.
  • Load Handling: Brake motors are designed to handle varying loads encountered in material handling applications. They provide the necessary power and torque to move heavy loads along the conveyor system smoothly and efficiently. The braking mechanism ensures safe and controlled stopping even with substantial loads, preventing excessive wear or damage to the system and facilitating efficient material transfer.
  • Energy Efficiency: Brake motors are engineered for energy efficiency, contributing to cost savings and sustainability in material handling operations. They are designed to minimize energy consumption during operation by optimizing motor efficiency, reducing heat losses, and utilizing regenerative braking techniques. Energy-efficient brake motors help lower electricity consumption, resulting in reduced operating costs and a smaller environmental footprint.
  • Safety Enhancements: Brake motors incorporate safety features that enhance the efficiency of conveyor systems and material handling by safeguarding personnel and equipment. They are equipped with braking systems that provide reliable stopping power, preventing unintended motion or runaway loads. Emergency stop functionality adds an extra layer of safety, allowing immediate halting of the system in case of emergencies or hazards, thereby minimizing the potential for accidents and improving overall operational efficiency.
  • Reliability and Durability: Brake motors are constructed to withstand the demanding conditions of material handling environments. They are designed with robust components and built-in protection features to ensure reliable operation even in harsh or challenging conditions. The durability of brake motors reduces downtime due to motor failures or maintenance issues, resulting in improved system efficiency and increased productivity.
  • Integration and Automation: Brake motors can be seamlessly integrated into automated material handling systems, enabling efficient and streamlined operations. They can be synchronized with control systems and sensors to optimize material flow, automate processes, and enable efficient sorting, routing, or accumulation of items. This integration and automation capability enhances system efficiency, reduces manual intervention, and enables real-time monitoring and control of the material handling process.
  • Maintenance and Serviceability: Brake motors are designed for ease of maintenance and serviceability, which contributes to the overall efficiency of conveyor systems and material handling operations. They often feature modular designs that allow quick and easy replacement of components, minimizing downtime during maintenance or repairs. Accessible lubrication points, inspection ports, and diagnostic features simplify routine maintenance tasks, ensuring that the motors remain in optimal working condition and maximizing system uptime.

By providing precise control, speed regulation, reliable load handling, energy efficiency, safety enhancements, durability, integration with automation systems, and ease of maintenance, brake motors significantly contribute to the efficiency of conveyor systems and material handling operations. Their performance and features optimize material flow, reduce downtime, enhance safety, lower operating costs, and improve overall productivity in a wide range of industries and applications.

brake motor

Can you explain the primary purpose of a brake motor in machinery?

The primary purpose of a brake motor in machinery is to provide controlled stopping and holding of loads. A brake motor combines the functionality of an electric motor and a braking system into a single unit, offering convenience and efficiency in various industrial applications. Here’s a detailed explanation of the primary purpose of a brake motor in machinery:

1. Controlled Stopping: One of the main purposes of a brake motor is to achieve controlled and rapid stopping of machinery. When power is cut off or the motor is turned off, the braking mechanism in the brake motor engages, creating friction and halting the rotation of the motor shaft. This controlled stopping is crucial in applications where precise and quick stopping is required to ensure the safety of operators, prevent damage to equipment, or maintain product quality. Industries such as material handling, cranes, and conveyors rely on brake motors to achieve efficient and controlled stopping of loads.

2. Load Holding: Brake motors are also designed to hold loads in a stationary position when the motor is not actively rotating. The braking mechanism in the motor engages when the power is cut off, preventing any unintended movement of the load. Load holding is essential in applications where it is necessary to maintain the position of the machinery or prevent the load from sliding or falling. For instance, in vertical applications like elevators or lifts, brake motors hold the load in place when the motor is not actively driving the movement.

3. Safety and Emergency Situations: Brake motors play a critical role in ensuring safety and mitigating risks in machinery. In emergency situations or power failures, the braking system of a brake motor provides an immediate response, quickly stopping the rotation of the motor shaft and preventing any uncontrolled movement of the load. This rapid and controlled stopping enhances the safety of operators and protects both personnel and equipment from potential accidents or damage.

4. Precision and Positioning: Brake motors are utilized in applications that require precise positioning or accurate control of loads. The braking mechanism allows for fine-tuned control, enabling operators to position machinery or loads with high accuracy. Industries such as robotics, CNC machines, and assembly lines rely on brake motors to achieve precise movements, ensuring proper alignment, accuracy, and repeatability. The combination of motor power and braking functionality in a brake motor facilitates intricate and controlled operations.

Overall, the primary purpose of a brake motor in machinery is to provide controlled stopping, load holding, safety in emergency situations, and precise positioning. By integrating the motor and braking system into a single unit, brake motors streamline the operation and enhance the functionality of various industrial applications. Their reliable and efficient braking capabilities contribute to improved productivity, safety, and operational control in machinery and equipment.

China Custom 57mm 1.8 Degree NEMA 23 Permanent Magnet Bipolar Stepper Stepping Motor with Brake   vacuum pump booster	China Custom 57mm 1.8 Degree NEMA 23 Permanent Magnet Bipolar Stepper Stepping Motor with Brake   vacuum pump booster
editor by CX 2024-04-30